Nonblocking Supervisory Control
of Nondeterministic Systems *

Michael Heymann' and Feng Lin?

Abstract

In this paper we extend the theory of supervisory control of nondeter-
ministic discrete-event systems, subject to nondeterministic specification,
developed in [9]. We focus our attention on nonblocking and liveness con-
siderations and develop algorithms for nonblocking-supervisor synthesis.

12

1 A personal perspective (of the first author)

The recognition in the late 1950s that linear filtering can be accomplished re-
cursively, inspired the development of the Kalman filter and its dual, the linear
quadratic optimal controller. The concepts of controllability and observability, the
cornerstones of Algebraic Systems Theory, were not far behind. Early research on
Algebraic Systems Theory focused on these concepts and issues related to canon-
ical forms, canonical (minimal) realizations, system structural equivalences and
invariants. These and related questions occupied much of the Algebraic Systems
Theory research agenda of the 1960s. In the second half of that decade, the dis-
covery of the pole shifting theorem provided the first insights into the connection
between controllability and state-feedback. This later led to the emergence of the
“geometric” theory of linear systems where the connection between pole shifting
and controllability (and their obsevational duals) played major roles. At around
the same time the fundamental feedback invariants of linear systems were first
discovered.

I became familiar with Paul Fuhrmann’s work on systems theory when I first
came accross his classical paper “Algebraic System Theory - an Analyst’s Point of
View”. At the time, I was working on the paper “Linear Feedback - An Algebraic

*This research is supported in part by the National Science Foundation under grant ECS-
9315344 and in part by the Technion Fund for Promotion of Research.

!Department of Computer Science, Technion, Israel Institute of Technology, Haifa 32000,
Israel, e-mail: heymann@cs.technion.ac.il. The work by this author was completed while he was
a Senior NRC Research Associate at NASA Ames Research Center, Moffett Field, CA 94035.

?Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI
48202, e-mail: flin@ece.eng.wayne.edu.

Approach” which dealt with the algebraic stucture of linear state-feedback. (The
two papers have many points of contact). This first exposure and many interactions
thereafter led to my continuing friendship with Paul for which I am very grateful.

In the early 1980s I reached the (personal) conclusion that a major obstacle to
the practical “implementability” of continuous (especially linear) control theory, is
the fact that many practical systems possess discontinuities, discrete interactions
with their environment, parametric and structural uncertainty, nondeterminism
and the like. A major component in the puzzle of how to control complex systems
appeared to be missing!

This led to my embarkation on a new path - exploring discrete event control
systems - where attention is focused exclusively on the logical (or discrete) aspects
of system dynamics. With the recent maturing of the discrete event control theory
and with many of the discrete aspects becoming clarified, it is progressively becom-
ing feasible to begin an assault on “hybrid” systems in which the continuous and
discrete aspects of system dynamics fully interact and coexist. It is not unlikely
that in the not too distant future algebraic aspects of hybrid systems will become
important, and an “Algebraic ” theory of hybrid systems will emerge.

The present paper deals with the control of nondeterministic discrete event
systems which, hopefully, sometime in the not too distant future will find its logical
connection to my “algebraic” origins.

2 Introduction

Most of the published research on control of discrete-event systems (DES) has
focused on systems that are modeled as deterministic finite state machines. For
such systems, an extensive theory has been developed [23]. A great deal of attention
was also given to the control of partially observed discrete-event systems [15], in
which only a subset of the system’s events are available for external observation.
For such systems, necessary and sufficient conditions for existence of supervisors
[15] [22] [23], algorithms for supervisor synthesis [2] [15] [16], for off-line as well as
on-line implementation [2] [7], have been obtained, and a wide variety of related
questions have been investigated.

Partially observed systems frequently exhibit nondeterministic behavior. There
are, however, situations in which the system’s model is nondeterministic not be-
cause of partial observation but, rather, because either the system is inherently
nondeterministic, or because only a partial model of the system is available and
some or all of its internal activities are unmodeled.

In contrast to deterministic discrete-event systems, whose behaviors are fully
specified by their generated language, nondeterministic systems exhibit behaviors
whose description requires much more refinement and detail. Further, while in
the deterministic case, legal behavior of a system can be adequately expressed in
terms of a language specification, this is clearly not always true when the system
is nondeterministic. Indeed, to formally capture and specify legal behavior of the
controlled system, it may be necessary to state, in addition to the permitted lan-
guage, also the degree of nondeterminism that the controlled system is allowed

to retain. Various semantic formalisms have been introduced over the years for
modeling and specification of nondeterministic behaviors. These differ from each
other, among other things, in the degree of nondeterministic detail that they cap-
ture and distinguish. These formalisms include CSP [11] and the associated failures
semantics, bisimulation semantics [19] and labeled transition systems [4]. In [5]
and [6] the trajectory model formalism was introduced as a semantic framework
for modeling and specification of nondeterministic behaviors with specific focus on
discrete event control. It was shown there that this semantic is a language congru-
ence that adequately captures nondeterministic behaviors that one might wish to
discriminate and distinguish by discrete-event control. Thus, for control purposes,
nondeterministic discrete-event systems can be modeled either as nondeterministic
automata (with e-transitions) or as trajectory models.

In recent years, there has been increasing interest in supervisory control of non-
deterministic systems as reported, e.g., in [3] [12] [20] [21] [25]. However, while
some existence conditions for control of nondeterministic systems have been de-
rived, only limited progress on development of algorithms for supervisor synthesis
has been reported (see e.g. [20] where a synthesis algorithm based on failures se-
mantics is presented). Indeed, the direct supervisor synthesis for nondeterministic
systems seems to be quite a difficult task (and, as will be shown below, unneces-
sary).

Motivated by this observation, we began an investigation, [8] [9], of the connec-
tion between the supervisory control problem for general nondeterministic systems
and the corresponding problem for partially observed deterministic systems. Our
work led us to develop an approach to synthesis of supervisors for nondeterministic
systems wherein direct advantage is taken of the existing theory for control under
partial observation.

In [9] we considered the supervisory control problem of nondeterministic discrete-
event systems subject to trajectory-model specifications. Our approach to the su-
pervisor synthesis was based on the following basic idea: We first synthesized from
the given system, by adding to it hypothetical transitions and hypothetical uncon-
trollable and unobservable events, a deterministic system whose partially observed
image is the original nondeterministic system (in the sense that the hypothetical
events are obviously not observed). We called this procedure lifting. Before per-
forming the lifting, the legal (trajectory model) specification was embedded in the
original nondeterministic system model so that it can readily be dealt with in the
corresponding lifted deterministic system. The next step of the synthesis was to
construct a supervisor for the lifted system subject to the (obvious) condition that
the artificially added events are neither observable nor controllable. Such a su-
pervisor can easily be constructed using the well known theory and algorithms for
supervisory control of partially observed systems. It is self evident, and we showed
it formally, that a supervisor synthesized in this way is applicable for the original
nondeterministic system and satisfies the specifications. Moreover, we showed that
if the supervisor designed using this approach is optimal for the lifted system, it
is also the optimal supervisor for the original system. Thus, since control under
partial observation is well understood, we only had to, ultimately focus on the

auxiliary steps of model lifting and specification embedding.

The present paper is a continuation of this research. In [8] [9] we focused our
attention only on safety specifications, without consideration of liveness issues. We
did not worry about questions related to task completion, nor about the problem of
possible blocking. We extend here the results of [9] to include nonblocking issues
and liveness considerations. This generalization which, in spirit, is very similar
to the parallel situation in the deterministic case, introduces several additional
complexities to the theory, that have to be examined in detail. We develop the
theory and the associated synthesis algorithms for nonblocking supervisory control
by examining the so called, static case, where a subset of target (or marked) states
and a subset of forbidden states of the system are specified. The control objective is
then to disable the smallest subset of transitions such that, in the controlled system,
no path leads to a forbidden state and every path can be extended to a target state.
It can be shown that the more general dynamic case, where the specification is given
by a trajectory model (or as a nondeterministic automaton), is transformed into
the simpler static setting, in which the supervisor is then synthesized. Detailed
algorithms for optimal supervisor synthesis are provided. We also briefly address
the problem of control under partial observation (where some of the actual events
in the modeled system are unobservable) and the problem of decentralized control.

Due to space limitation, some details are omitted, which can be found in [10].

3 Nonblocking supervisors

We model a nondeterministic discrete-event system by the trajectory model in-
troduced in [6], whose notations are adopted in this paper. For the purpose of
specification, we often represent a trajectory model by a nondeterministic automa-
ton. Similar to the language model and deterministic automaton used in modeling
deterministic systems, the trajectory model representation and the automaton rep-
resentation of nondeterministic systems are interchangeable: For each nondeter-
ministic automaton, there exists a unique trajectory generated by the automaton;
and for each trajectory model, we can construct an automaton generating the tra-
jectory model. In particular, for each path p in the automaton, we can find its
corresponding trajectory ¢,. To simplify the notation, we will use the same sym-
bol to denote both the nondeterministic automaton and its associated trajectory
model.

Since we are interested in the blocking and liveness issues in this paper, in
addition to the usual elements of an automaton, we specify a set of marked states
()., that represent, for example, task completions. To specify the desired behavior
of the controlled system, we can use either a “static” specification or a “dynamic”
specification. Similar to the algorithm developed in [9], we can always transform
a dynamic specification into a static specification, where a subset (), C @ of
forbidden states that the system is not allowed to visit is specified. Thus, our
system model can be written as

P = (Z U {6}7 Qv(sv qo; QTH? Qb)

As in the deterministic case, we assume that P is trim (i.e., both accessible and
co-accessible).
We define the set of marked trajectories of P as

Pm =A{t,: p ends in a marked state}.

The supervisory control problem is to synthesize a supervisor v, (defined as a
function v : L(P) — 2% that after each observed string s € L(P) of executed
transitions, disables a subset v(s)CX, of controllable events,) such that the su-
pervised system satisfies the state restrictions in that each path of the supervised
system is a legal path; that is, each path ends at a target state (in @Q,,) without
ever entering a forbidden state (in @). When such a supervisor exists, we would
like to find, among all possible solutions, a least restrictive one; that is, a solution
that disables as few as possible transitions.

For a supervisor «, the language generated by the supervised system ~/P is
given inductively as [9]

1. c¢€ L(y/P); and
2. (Vs€ L(y/P))(Vo € X)so € L(y/P)eso € L(P) Ao & ~(s).
The supervised system is then given by
/P = Plldet(L(v/P))

where || denotes the strict synchronous (parallel) composition and det(L(v/P))
the deterministic process generating language L(v/P) (as defined in [9]).
In principle, our goal is to design a supervisor v such that

VP =P,

where P; is (the trajectory model of) the (largest) trim subautomaton of

P, = (Z U {6}7 Qm 557 qo, QSM)
where Qs = @ — Qs, 65 = d|g. (]g. being the restriction of § to @), and Qs =

Qs N Q,,. Without loss of generality we shall assume that P, = P,.

Such a supervisor is nonblocking in the sense that every trajectory enabled by
the supervisor is a prefix of a trajectory that ends at a marked state.

As we shall see, such a supervisor does not always exist, and when it does not,
we shall seek its best nonblocking approximation, as will be discussed below.

To obtain the desired supervisor, we proceed, just as in [9], by first transforming

P to a deterministic automaton
P = (Z U 2/7 Qv 57 (707 va Qb)

using the procedure “Extend” given below.

Procedure Extend

Input: P =(EU{e}, @, 6, 90, Qm, Q)

Output: P=(EUX,Q,0,q, Qm,Qs).

5

1. Q:=Q;
2. For each ¢ € Q and 0 € ¥
If |6(¢q,0)] > 1, add one more state, ¢’

and add e—transitions as follows:

Q:=QuUid}

6(q,0) = {q'};

3(d,) = 8(q. 0);
else set

3. For each g € Q
replace the e—transitions by transitions labeled 71, 7, ... as follows:

If 6(q, €) = {q1, ... gn}, then set
g m) :=A{a};
S'('qﬁn) = {¢};
4. Set

XNJ’ =7, 72,...},
Q= Q.
Qp = QU{GeQ — Q : 6(q,¢) € Q).

5. End of algorithm

We now define the following languages:
L(P) := {sex~: S(qNO,S) is defined},
Lin(P) :={s€L(P) : 5(Go, 5)EQm }

E = {s€L(P): (Vs'<5)d(do, ') €EQ — Qv}-
From the definition of F it is clear that

E=L,(P)NE

that is, £ is L, (P)-closed [22]. From Proposition 7 of [9] it follows that the
projection of P on X is P, that is,

P\y =P

We call a path marked if it ends in a marked state of Q,, = Q,,. We can prove
the following

Proposition 1 A marked path p of the system P is legal (that is, is a path in Py)
if and only if it is the projection of a path associated with a string s€ K in P.

Proof

Consider a marked path p = (qo, ..., 0i, @i, ..., Ok, qi) of P that visits a state
gy € . The corresponding path in P has the same form with possible insertions
of pairs (executions) o’, ¢/, where ¢’ € ¥’ and ¢’ € () — Q). Hence the corresponding
path pin P also visits g, € Qy C Q,. Conversely, let p = (qo, ..., T, Gir oors Thy @)
be a marked path in P and assumes it visits a state ¢€Qs. If g5 € Qs, then the
projected path in P also visits the state ¢,. If ¢, € Qy — @y, then ¢, # ¢ and by
the definition of (), the next state visited by the path in P must be in ()p. This
bad state will be visited also by the projected path in P. Thus, a marked path in
P visits only states in Q — Q, if and only if the corresponding marked path in P
visits only states in () — Q).

|

We can now state the main result of this section that summarizes the conditions

for existence of the desired supervisor.

Theorem 1 There exists a nonblocking supervisor v such that v/P = P; if and
only if E is controllable and observable with respect to L(7P).

Proof .

By the results of [15], there exists a nonblocking supervisor v : PL(P) =
L(P) — 2% such that Lm(’y/ﬁ) = I if and only if F is controllable, observable,
and Lm(ﬁ)—closed.

Since E' is Lm(ﬁ)—closed by definition, the result follows from Proposition 1.

|

If I is not controllable and observable, we will synthesize an optimal supervisor
7 (under partial observation) for P such that L,,(y/P) = supCN (E), the supremal
controllable and normal sublanguage of K. The reason that we can replace here
the requirement of observability by normality, is due to the fact that in the lifted
system all unobservable events ' are also uncontrollable, in which case a language
is controllable and observable if and only if it is controllable and normal [18].

The synthesis is discussed in the next section.

4 Supervisor synthesis

Our objective is to design a nonblocking supervisor 4 for P such that
L (v/P) = supCN(E).

This supervisor tracks only the events of ¥, and hence can be applied directly to
P. It will be least restrictive in the sense that it allows the system P to visit as
many states in Qs as possible (see [9]).

Such a supervisor can be designed with or without the lifting procedure, as
outlined in the two ensuing algorithms.

Algorithm 1 (Synthesis by lifting)
1. Lift P to P using Procedure Extend:
75 = (Z U 2/7 Qv S? (707 va Qb)

2. Compute the sublanguage supCAN (F), that is, the supremal controllable and
normal sublanguage of F.

3. Compute the projection P(supCN(E)) of the language supCAN (E) on ¥ and
let the supervisor v be defined by

(Vs € PsupCN(E))y(s):={c € X:s0 ¢ PsupCN(E)}.

|
In the above algorithm, Step 1 is described in Section 3. Steps 2 and 3 are
standard elements in the design of supervisors under partial observation [15].
The correctness of the above algorithm is obvious (see also [9]) and is stated in
the following

Theorem 2 The supervisor synthesized using Algorithm 1 is nonblocking and
satisfies

L (v/P) = supCN(E).

Proof
Elementary.
|
An alternate procedure for supervisor synthesis, that does not require the lifting
of P, is described in the next algorithm, where Ace(.) denotes the accessible part
of an automaton.

Algorithm 2 (Synthesis without lifting)

. Ignore the set @), of marked states and convert the automaton P = (¥ U
{€},Q, 0, qo, Qs) to a deterministicautomaton P = Ace(X, @, d, qo, Qs), where

Q =27
5(d.0) == (¢ € Q: (B3 €) € (8(q,)}
doi= 17 €Q:q € (q));

0 (Y € £1)8(4.u) € Qu):

. Set

and form the product automaton

,P/ = (Z U {6}7Q X Qa(slv (qovqo)va X Q)?

where

5/(((]7 (})7 U) = { (5((]7 0-)7 S(Q’ U)) lf bOth 5((]7 U) and S(Qv 0') are deﬁned

~) undefined otherwise.

. By trimming P’ compute the set:

Qi:={qge@:(3G¢€ Q)(q,@) is accessible in P’ from (¢s, §,)
and co — accessible in P’ to @, X Q};

I Q= Qs, go to 7. Otherwise, set

Qs = Qt7 . .

. Goto3

. Define the supervisor ~:

v(s) = {o € X, : §(do, s0) is not defined}.

To prove that Algorithm 2 designs the correct supervisor in a finite number of
steps (for finite automata), we first define, for languages B and M with B C M =
M C (Zuxh,

supN'(B) = B — P7'P(M — B)(X U &)

(B, M) = MNP~ (P(supN(B)) — (P(M) — P(supN(B)))/X7.)X7)

A(B,M)=BnQB,M).
where L/Y% = {s € ¥*: (Ju € X% .)su € L}. In the above, the operator supN'(B)
calculates the supremal normal sublanguage of B (with respect to M) [1], the
operator (B, M) generates the supremal controllable and normal sublanguage of
B (with respect to M) [1] and the operator A(B, M) intersects (B, M) with B.

Suppose we apply these operators repeatedly with respect to the lifted automa-
ton P and the corresponding legal language F as follows.

My = L(P), By=F
Mi-l-l = Q(BH Ml)v Bi-l—l = A(Bm Mz)v 1= 07 1727

Then we can show that B; converges to supCN'(E) in the following

Lemma 1 If there exists a positive integer N such that Byy; = By, then
By = supCN (E).
Proof
Omitted.
|]

Using the above lemma, we can prove the following theorem, which states the
correctness of Algorithm 2.

Theorem 3 The supervisor synthesized using Algorithm 2 is nonblocking and
satisfies

L (v/P) = supCN(E).
Outline of Proof
We only give an outline of the proof because its details are tedious and provide
no additional insight.
It is clear that in Algorithm 2, the first part of Step 1 is equivalent to calculating
supN (By) (without explicitly introducing ¥') and the first part of Step 5 calculates
supN(B;). The second parts (where Q, is calculated) of Steps 1 and 5 calculate

PY(Bi, M;) = P(supN(Bi)) — (P(M;) — P(supN(B;)))/ X2
Steps 3 and 4 are equivalent to calculating

B; N P_lp(Q(B“ MZ))

= B; N P_lp(Q(B“ MZ)) N M;

= B, NQB;, M;)

= A(B;, M;).
Therefore, Algorithm 2 implements the recursive computation of B;, and calculates
supCN(E).

10

5 Control under partial observation

We now consider the situation when not all the events in ¥ are observable and the
supervisor must be based on a subset ¥, C ¥ of observable events. In this case,
the set of unobservable events in the lifted process, is (X U X') — 3,, and if we
denote by T : ¥* — ¥* the projection operator, then the projection from ¥ U 3/
to X, is obtained by the composition of T and P.

In view of Theorem 1, the existence (and synthesis) of a supervisor under par-
tial observation for P is equivalent to that of the corresponding supervisor for P,
because Theorem 1 hold for any supervisor, and a supervisor under partial obser-
vation is a special case. Therefore, we obtain the following corollary to Theorem
2.1 in [15].

Corollary 1 There exists a nonblocking partial observation supervisor v : T PL('P)
— 2% such that /P = P, if and only if E is controllable (with respect to ¥, and

L(75)) and observable (with respect to ¥, and L(P)).

The supervisor can be synthesized with respect to P. However, since it is no
longer true that all the controllable events are also observable, observability can
no longer be replaced by normality. Consequently, since the supremal observable
sublanguage may not exist, a unique optimal supervisor may not exist either. To
overcome this difficulty, two approaches can be employed: (1) to synthesize a sub-
optimal supervisor based on the supremal controllable and normal sublanguage
(with respect to 3,); and (2) to synthesize a maximal controllable and observ-
able sublanguage, which may not be unique. Both approaches have been studied
extensively in the literature and will not be repeated here.

If the specification is a language specification, then F is normal [9]. In such a
case, as we shall show in the following lemma, E is observable with respect to X,

and L(P) if and only if PFE is observable with respect to ¥, and PL(P).

Lemma 2 Let B be normal with respect to ¥ and L(P). Then B is observable

with respect to ¥, and L(P) if and only if PB is observable with respect to ¥,

and PL(P) = L(P).

Proof
Omitted.

Using the lemma, we can immediately obtain the following

Corollary 2 For a nondeterministic system P and a language specification L(?—A[),
there exists a nonblocking partial observation supervisor v such that L(y/P) =

A A

L(#H) if and only if L(#H) is controllable and observable with respect to L(P).

This result was obtained in [14], where only language specifications were con-
sidered. The results in this section show that there is no need to treat the un-
observable events ¥,, = X — Y, differently from the events ¥/, except that some
events in Y,, may be controllable. As a consequence, the supervisor synthesis may
be more complex.

11

6 Decentralized control

The design of decentralized supervisors for nondeterministic systems can also be
dealt with by using the deterministic theory and the lifting procedure. Since the
methodology is quite analogous to what we have seen, we shall only outline the
approach.

Without lose of generality, we may consider the case of two (decentralized)
supervisors v; and 7,. For ¢ = 1,2, +; can observe events in ¥;, C ¥ and control
events in ;. C X. Letting T; : ¥* — ¥ denote the projections, we can can write
the supervisors ~; as maps

Vi - TZL(,P) — 22:“.

As in [24], an event is enabled if it is enabled by both supervisors. The following
existence result is then a corollary of Theorem 4.1 of [24].

Corollary 3 There exists two nonblocking decentralized supervisors 4 and 9
such that (y1Ay2)/P = Ps if and only if E is controllable (with respect to ¥;.UXs,)
and co-observable.

Therefore, we conclude that both decentralized control and control under par-
tial observation of nondeterministic systems can be synthesized by the existing
methods for deterministic systems if we lift the corresponding processes.

7 Computational complexity

Since, in general, a supervisor synthesis problem under partial observation is of
exponential complexity in terms of the number of transitions in the automata, it
may be expected that the complexity of supervisor synthesis for nondeterministic
systems also be exponential. Denote the number of states in an automaton P by
|P| and the number of events by |X|. We outline the complexity analysis as follows.

Algorithm 1 involves two essential steps: (1) the procedure Extend that lifts
P to a deterministic one, and (2) controller synthesis with respect to the lifted
automaton. The procedure Extend adds at most |P| x |X| states and |P| event
labels to the process. The lifted automaton has, therefore, at most |P|(|X| +
1) states and |P| + |X| event labels. The complexity of executing Extend is of
order |P|(|X|+ 1)(|P]| 4 |¥]). The synthesis of the optimal controller for the lifted
process cannot be executed “on-line” because of the nonblocking requirement and,
therefore, Algorithm 1 is of complexity

O((|3] + [P[)2IPIEHD),

For Algorithm 2, the complexity of executing Steps 3-6 is at most |X||P[2/7.
These steps will be repeated at most |P| times. Therefore, Algorithm 2 is of
complexity

O(|S|[P|21P1).

12

References

1]

[10]

[11]
[12]

[13]

[14]

R. D. Brandt, V. Garg, R. Kumar, F. Lin, 5. I. Marcus and W. M. Won-
ham, 1990. Formulas for calculating supremal controllable and normal sub-
languages. Systems & Control Letters, 15, pp. 111-117.

S. L. Chung, S. Lafortune and F. Lin, 1992. Limited lookahead policies in su-
pervisory control of discrete event systems. IEEFE Transactions on Automatic

Control, 37(12), pp. 1921-1935.

M. Fabian and B. Lennartson, 1994. Object oriented supervisory control
with a class of nondeterministic specifications, Report No CTH/RT/1-94/007,
Chalmers University of Technology, Goteborg, Sweden.

M. Hennesy, Algebraic Theory of Processes, MIT Press, 1988.

M. Heymann, 1990. Concurrency and discrete event control. IEFE Control
Systems Magazine, 10(4), pp. 103-112.

M. Heymann and G. Meyer, 1991. An algebra of discrete event processes.
NASA Technical Memorandum 102848.

M. Heymann and F. Lin, 1994. On-line control of partially observed discrete
event systems. Discrete FKvent Dynamic Systems: Theory and Applications,

4(3), pp. 221-236.

M. Heymann and F. Lin, 1995. On observability and nondeterminism in dis-
crete event control, Proceedings of the 33rd Allerton conference on Commu-
nication Control and Computing, pp. 136-145.

M. Heymann and F. Lin, 1996. Discrete event control of nondeterministic
systems. CIS Report 9601, Technion, Israel.

M. Heymann and F. Lin, 1996. Nonblocking supervisory control of nondeter-
ministic systems. CIS Report 9620, Technion, Israel.

C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

K. Inan, 1994. Nondeterministic supervision under partial observation. in G.
Cohen and J.-P. Quadrat, Eds., 11th International Conference on Analysis
and Optimization of Systems, pp. 39-48, Springer Verlag.

R. Kumar and M. A. Shayman, 1993. Non-blocking supervisory control of
nondeterministic systems via prioritized synchronization. Technical Research
Report, T.R. 93-58, Institute for Systems Research, University of Maryland.

R. Kumar and M. A. Shayman, 1994. Supervisory control under partial obser-
vation of nondeterministic systems via prioritized synchronization. Technical
Report, Department of Electrical Engineering, University of Kentucky.

13

[15]

[16]

[17]

[21]

[22]

F. Lin and W. M. Wonham, 1988. On observability of discrete event systems.
Information Sciences, 44(3), pp. 173-198.

F. Lin and W. M. Wonham, 1988. Decentralized supervisory control of
discrete-event systems. Information Sciences, 44(3), pp. 199-224.

F. Lin and W. M. Wonham, 1990. Decentralized control and coordination of
discrete event systems with partial observation. IEEE Transactions on Auto-

matic Control, 35(12), pp. 1330-1337.

F. Lin and W. M. Wonham, 1994. Supervisory control of timed discrete event
systems under partial observation, IEEFE Transactions on Automatic Control,

40(3), pp. 558-562.

R. Milner, A Calculus of Communicating Systems, LNCS 94, Springer Verlag,
1980.

A. Overkamp, 1994. Supervisory control for nondeterministic systems. Proc-
cedings of 11th International Conference on Analysis and Optimization of
Systems, pp. H9-65.

A. Overkamp, 1994. Partial observation and partial specification in nondeter-
ministic discrete-event systems, preprint.

R. J. Ramadge and W. M. Wonham, 1987. Supervisory control of a class
of discrete event processes. STAM J. Control and Optimization, 25(1), pp.
206-230.

P. J. Ramadge and W. M. Wonham, 1989. The control of discrete event sys-
tems. Proceedings of IEEE, 77(1), pp. 81-98.

K. Rudie and W. M. Wonham, 1992. Think globally, act locally: decentralized
supervisory control. [EEE Transactions on Automatic Control, 37(11), pp.
1692-1708.

M. Shayman and R. Kumar, 1995. Supervisory control of nondeterministic sys-
tems with driven events via prioritized synchronization and trajectory models.

SIAM Journal of Control and Optimization, 33(2), pp. 469-497.

J. N. Tsitsiklis, 1989. On the control of discrete-event dynamical systems.
Mathematics of Control, Signals, and Systems, 2(1), pp. 95-107.

14

